If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8q=q^2-7
We move all terms to the left:
8q-(q^2-7)=0
We get rid of parentheses
-q^2+8q+7=0
We add all the numbers together, and all the variables
-1q^2+8q+7=0
a = -1; b = 8; c = +7;
Δ = b2-4ac
Δ = 82-4·(-1)·7
Δ = 92
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{92}=\sqrt{4*23}=\sqrt{4}*\sqrt{23}=2\sqrt{23}$$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-2\sqrt{23}}{2*-1}=\frac{-8-2\sqrt{23}}{-2} $$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+2\sqrt{23}}{2*-1}=\frac{-8+2\sqrt{23}}{-2} $
| 4v^2+24v+11=0 | | (42z^2)+19z=0 | | (5n^2)+14n+8=0 | | (x-9)+(x+5)=168 | | (x-9)(x+5)=168 | | -8(2y+2)=0 | | -4(-r+2)=4 | | (13u^2)+43u=0 | | (28y^2)+5y=0 | | -5(-3k-2)=-65 | | (u^2)-17u-18=0 | | (z^2)-11z+10=0 | | 2x4−166x2=−324x= | | 4x-33=-15 | | (25p^2)-38p=0 | | (h^2)-33h=0 | | 18+0.12x=9+0.17x | | (k^2)+12k=0 | | (x^2)+21x+20=0 | | (p^2)+6p+9=0 | | 2x−4=x+1 | | 5^3-10^2=x(8-2)+2x=3x | | (m^2)-11m=0 | | (s^2)-12s+20=0 | | (4x3)x(2x)=48 | | 7x−6=8x-27 | | a=(a+20)(a+5) | | 16x-38=17x-26 | | 3(z−12)−17=–11 | | (f^2)+29f=0 | | 26x+22=9x+1 | | x2−2=38 |